
SUMMER 2016 CS61C DISCUSSION PREPARATION NOTES

ALEX JING

Contents

1. C Intro clarification 2
1.1. chars, strings, and list of strings 2
1.2. pass by value and pass by reference 2
1.3. typedef and struct declaration 2
1.4. #ADVANCED rvalue and lvalue 3
2. Uncommented Code 4
3. Pointers 4
4. Debugging 5

1

2 ALEX JING

1. C Intro clarification

1.1. chars, strings, and list of strings.

• char is a C primitive(most basic unit), it is declared by single qoute. Notice
there is a difference between ’a’ and ”a”.(first is a char, second is a string.)
• string in C is just an null-terminated array of char. Null-terminated means

at the end of every string there is a implicit null character ’\n’. You can
declare a string as char a[] or char a*. While the former may make more
sense if you know java, the latter is actually used more frequently. It also
makes sense because a string is just a char array, you can simply declare a
pointer to the first char in the array and the compiler will figure out the
end by the null character at the end (which can be tricky for code-writing
in certain cases).
• To generalize, you can always declare an array with an pointer. This is

both hacky and dangerous, so be sure to know what you are doing.
• if you know the length of your char (or maximum length in most cases),

you could also do char a[LENGTH], which declares a string of the given
length on the stack
• Lastly, if you see things like char **my string list, i.e. double pointers,

in most cases in this class, it means an array of arrays, and since it is a
char pointer, it usually means an array of string.

1.2. pass by value and pass by reference. C functions always pass by value,
which means when a function foo calls another function bar, the arguments given
by foo is copied to the stack of bar. This explain why pointers are so useful,
because we can dereference the pointer, go to the memory address and retrieve the
data. This way we can achieve communications between functions.

1.3. typedef and struct declaration.

• In class we have the following way to declare a struct and its usage:
typedef struct{

int a;

int* pointer;

} myStruct

myStruct myS;

Essentially what typedef is doing here is to declare a struct as a type named
myStruct, such that the compiler would know myStruct as any other built
in C types such as int, char etc.

• This is really a special use of typedef, you can really use typedef to give a
customized name to anything if necessary. For example, if for some reason

SUMMER 2016 CS61C DISCUSSION PREPARATION NOTES 3

you want to call a 32-bit unsigned integer as myNum, you could do type-
def uint32 t myNum, and you could declare any 32-bit unsigned integer
as myNum. This is very common in more advanced C programming be-
cause it improves your code readability by a lot.

• You can also declare a struct like this (you will probably see this more often
in actual C codes):
struct myStruct{

int a;

int* pointer;

}

struct myStruct myS;

Here, I am only declaring a struct, not a type (in contrast to typedef in
previous case). As a result, notice that you will have to call it struct
myStruct when declaring a variable.

• to summarize the nuance difference between these two types, typedef de-
fines a type alias that is a struct; struct declaration defines a struct that
compiler only knows if you state specifically that it is a struct.

• you can also combine both as the following, more info at Here:

typedef struct myStruct{

int a;

int* pointer;

}myStruct

1.4. #ADVANCED rvalue and lvalue. (for the curious minds)

• Values in C are divided into two types, lvalue and rvalue.
• lvalues are values that have an identifiable addresses, rvalues are everything

else (rest of the values)
• Since we know that memory can be visualized as indexed cells, lvalues are

values that could live in one of these cells.
• On the other hand, rvalues are values that do not live in memory at all.

As a result, you could not get their addresses.
e.g. if you do int *integer pointer = &1, this will throw an error because
1 is a rvalue here.
Similarly, if you do int *pointer to address = &malloc(100), this will
also give you an error because malloc returns an address, which itself does
not have an address.

http://stackoverflow.com/questions/1675351/typedef-struct-vs-struct-definitions

4 ALEX JING

2. Uncommented Code

(1) pointer arithmetic/recursion
(2) ! is boolean not, ˜ is one’s complement. Use ! on a false value(a.k.a integer

0 and null pointer 0x0) will give you 1. Use ! on everything else will give
you 0.

(3) ∧ is binary XOR. Remember C function adopts pass by value.

3. Pointers

(1) dereference pointer and assignment
(2) difference between *p++, ++*p, *++p.

First, on *p++:
There are two ideas that are potentially confusing:
• order of execution, which is the chronological order on how expressions
are evaluated
• order of precedence, which is how ’tightly’ an operator binds to its
operand.

On order of execution, while implementation dependent, the most intu-
itive way to understand it is to read it from left to right or from prefix to
postfix. Specifically, *p++ is carried out as:

1. we first dereference p and return the result stored in p. (prefix)
2. we increment the pointer p, not the value stored in p. (postfix)

To translate the one-liner to more readable code, it goes as the following:
return *p;

p = p+1;

You can read more Here.

On order of precedence, postfix generally have higher precedence than pre-
fix. This means postfix ++ binds more tightly to p than *. As a result,
++ acts on p, the pointer, rather than *p, the value stored in the pointer.
However, tighter binding does not necessarily mean earlier execution (it is
in fact implementation dependent.).
The baseline is, after this expression, the original value stored in p will be
return, the pointer p will be advanced to the next cell in memory. Second,

http://stackoverflow.com/a/860053/5238411

SUMMER 2016 CS61C DISCUSSION PREPARATION NOTES 5

++*p and *++p are more straightforward.

Since there is not postfix, we can just defer the order of precedence by
the rule of associativity, which is from right to left (from closet to far-
thest.).
Specifically, ++*p will dereference p first the then ++ will act on the deref-
erenced value.
*++p will advance the pointer first then dereference the value the new
pointer points to.

(3) hacky strlen (so overly used tbh....)
But mechanistically, str will be dereferenced first then incremented. So
when str returns the null terminator of the string, the null character will
be returned and str will be pointing to the one character past the null termi-
nator (which is allowed by C99 standards.). The returned null terminator
will evaluate to false, hence break out of the loop.

4. Debugging

(1) argc, argv and array pointer conversion.
When you pass an array declared as char arr[] to a function, it will auto-
matically be converted to a pointer (pointing to the first element in the ar-
ray.). Therefore, you must have a way to tell the next function how long the
array is, otherwise horrible things will happen as you step out of the bound.
Here, v stands for value, c stands for count. Also, sizeof(summands) will
give you the size of a pointer, not the entire array.

(2) pointer arithmetic go wild. Think about what if string has the maximum
allowed address and you are trying to increment it. (KERNEL PANIC!!!!)

(3) hacky copy (again, never ever write code like this....people reading this will
have a thousand reasons to kill you)
Mechanistically, this is similar to the hacky strlen. One thing to note is
that in C99 6.5.16, An assignment expression has the value of the
left operand after the assignment.
This means that once the null terminator in src is copied over, it will be
assigned to the corresponding position in dst, after which the value at dst
will be returned (which is the null character we just assigned it), the null
terminator breaks the loop.

	1. C Intro clarification
	1.1. chars, strings, and list of strings
	1.2. pass by value and pass by reference
	1.3. typedef and struct declaration
	1.4. #ADVANCED rvalue and lvalue

	2. Uncommented Code
	3. Pointers
	4. Debugging

