SUMMER 2016 CS61C DISCUSSION PREPARATION NOTES

ALEX JING

Contents

1. Great Resources outside the class 2
2. Unsigned Integers 2
3. Signed Integers w/ Two's complement 2
4. Bitwise Operator Trick: Masking 2

1. Great Resources outside the class

- HKN test bank
- Piazza
- Ask around, especially if you are not from Berkeley. At the very least, you could probably know a few good restaurant

2. Unsigned Integers

Very important to have on cheat sheet: Hex to binary conversion Table 4-bits correspond to one hexadecimal digit:

$0000=0$	$0001=1$	$0010=2$	$0011=3$
$0100=4$	$0101=5$	$0110=6$	$0111=7$
$1000=8$	$1001=9$	$1010=\mathrm{a}$	$1011=\mathrm{b}$
$1100=\mathrm{c}$	$1101=\mathrm{d}$	$1110=\mathrm{e}$	$1111=\mathrm{f}$

3. Signed Integers w/ Two's complement

- One's complement vs. Two's complement:

The only difference between this two is that when flipping the sign, we would add 1 after flipping all the bits.

Why is this important?
First, think about flipping the sign of 0 , which should give you back 0 . But One's complement would have two representations of 0 . Waste.

Also with Two's complement, all arithmetic operations just become very intuitive.

- Know the range well. This applies to all number rep schemes.

4. Bitwise Operator Trick: Masking

- Bitwise operation tricks: set, unset, toggle, parity test etc.
(http://www.catonmat.net/blog/low-level-bit-hacks-you-absolutely-mustknow/)

