
CS61B Spring 2016

Secret Section: Week 6

Tutor Team

April 11, 2016

1 Representations

Consider the graph below.

1

2

3

4

6

5

1

CS61B Guerrilla Section 1 Worksheet

Construct the following representations for the graph:
• Adjacency Matrix

aaaaa
src dest 1 2 3 4 5 6

1 0 1 1 0 1 0
2 0 0 1 1 1 0
3 0 0 0 1 0 0
4 0 0 0 0 0 1
5 0 0 0 0 0 0
6 0 0 0 0 1 0

• List of Edges

(1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (3,4), (4,6), (6,5)

• Adjacency List

1→ [2, 3, 5]
2→ [3, 4, 5]
3→ [4]
4→ [6]
5→ []
6→ [5]

What are the advantages and disadvantages of the different representations? Are some better than others?
• Adjacency matrices are pretty wasteful data structures. They use Θ(V 2) memory no matter
what, which is the worst case memory usage for both the other representations. This is because
the maximum number of edges in a graph is Θ(V 2). In addition, they take Θ(V) time to find
adjacent vertices (pretty slow), which is a very commonly required operation.
• Lists of edges are the most memory efficient representations of graphs, but they suffer from
performance issues, taking Θ(E) time to both check for the presence of an edge and to get the
adjacent vertices of a vertex.
• Adjacency lists strike a balance between adjacency matrices and lists of edges. They have
slightly larger memory requirements than a list of edges, but have much better performance,
especially when getting adjacent vertices (Θ(1)), which is very commonly required by graph
algorithms. On the other hand, they have much lower memory requirements than adjacency
matrices in the common case and the same in the worst case, while still outperforming them
on the adjacency operation.

2 DFS

(a) Draw a directed graph whose DFS pre-order traversal is A, B, C, D, E, and whose DFS post-order
traversal is C, B, D, E, A. Assume that ties are broken alphabetically.
A → B → C
↓ ↘
D E ? ?

(b) What is the runtime complexity? How about space complexity?
Time: O(V+E)
Space: O(V)
?

?

Spring 2016 2

CS61B Guerrilla Section 1 Worksheet

3 BFS

?

1

2 3

4

5 6

7 8

? Let’s say we want to find a path from node 1 to every
other reachable node.

(a) In what order does BFS visit the nodes? Break ties numerically.
1, 4, 5, 2, 3, 6, 7, 8 ?

(b) Fill in the missing code:

1 public c lass BreadthFirstPaths {

2 private boolean[] marked;

3 private int [] edgeTo;

4 ...

5

6 private void bfs(Graph G, int s) {

7 Queue <Integer > fringe = new Queue <Integer >();

8 fringe.enqueu(s);

9 marked[s] = true;
10 while (! fringe.isEmpty ()) {

11 int v = fringe.dequeu ();

12 for (int w : G.adj(v)) {

13 i f (! marked[w]) {

14 ___________________________

15 ___________________________

16 ___________________________

17 }

18 }

19 }

20 }

21 }

? fringe.enqueue(w);
marked[w] = true;
edgeTo[w] = v;
?

(c) What is the runtime complexity? How about space complexity?
Time: O(V+E)
Space: O(V)
?

Spring 2016 3

